Code: EC4T2, EE4T6

## II B.Tech - II Semester-Regular/Supplementary Examinations April 2019

## PULSE AND DIGITAL CIRCUITS

(Common for ECE, EEE)

Duration: 3 hours

Max. Marks: 70

PART - A

Answer all the questions. All questions carry equal marks

 $11 \times 2 = 22M$ 

1.

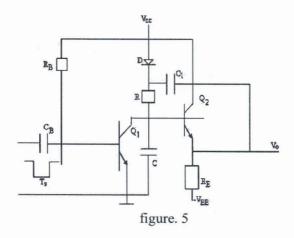
- a) What is meant by linear wave shaping? Give some examples of linear wave shaping circuits.
- b) Define rise time and fall time.
- c) What is meant by clipping in wave shaping?
- d) Define Steady state response.
- e) Compare between triggering at base and collectors.
- f) Write short notes on commutating capacitors.
- g) Draw the circuit diagram of non saturating binary.
- h) List the basic and universal gates.
- i) What do you understand by the terms fan-in and fan-out? Draw an RTL NAND Gate.
- j) List the methods of generating time-base waveforms.
- k) Define relaxation circuit. Give some examples.

## PART - B

| Answer any | THREE questions. | All questions carry | equal marks.                 |
|------------|------------------|---------------------|------------------------------|
|            |                  |                     | $3 \times 16 = 48 \text{ N}$ |

- a) Three low pass RC circuits are in cascade and isolated from one another by ideal buffer amplifiers. Find the expression for the output voltage as a function of time if the input is a step voltage.
  - b) Explain how High-pass RC circuit acts as differentiator.

6 M


- 3. a) Give the circuits of different types of shunt clippers and explain their operation with the help of their transfer characteristics.8 M
  - b) State and prove clamping circuit theorem with relevant circuit and waveforms.
- 4. a) Explain the phenomenon of fixed bias binary transistor circuit. 7 M
  - b) Sketch the circuit diagram of Schmitt trigger and explain its operation. Define UTP and LTP. 9 M
- 5. a) How Astable Multivibrator can be operated? Illustrate with waveforms. 8 M

b) Design a collector coupled monostable multivibrator to obtain an output pulse of amplitude 6V and a gating time of 20 μsec, I<sub>c</sub> (sat) = 6 mA. The base drive required for the ON transistor is 2 times I<sub>B</sub> (min).

Assume that  $V_{CE}$  (sat) =0,  $V_{BE}$  (sat) =0,  $h_{fe}$  (min) =20 &  $V_{CC}$  =6V.

- 6. a) In the boot strap circuit (shown in figure 5)  $V_{cc} = 25 \text{ V}$ ,  $V_{EE} = -15 \text{ V}$ , R = 10 K ohms,  $R_B = 150 \text{ K}$  ohms,  $C = 0.05 \mu\text{F}$ ,  $C_1 = 100 \mu\text{F}$  and  $R_E = 15 \text{ K}$  ohms. The gating waveform has a duration of 300  $\mu\text{s}$ . The transistor parameters are  $h_{ie} = 1.1 \text{K}$  ohms,  $h_{re} = 2.5 \times 10^{-4} \text{ K}$  ohms,  $h_{fe} = 50 \text{ and } h_{oe} = 1/40 \text{ K}$  ohms.
  - i. Draw the waveform of IC<sub>1</sub> and Vo , labeling all current and voltage levels,
  - ii. What is the slope error of the sweep?
  - iii. What is the sweep speed and the maximum value of the sweep voltage?
  - iv. What is the retrace time Tr for C to discharge completely?

Calculate the recovery time  $T_1$  for  $C_1$  to recharge completely. 10 M



b) Explain the basic principles of Miller and Bootstrap time base generators. 6 M